For the vectors shown below, sketch the vector $\frac{1}{3}\vec{w} - 2\vec{p}$. SCORE: 3 PTS GRADED BY ME

If
$$\vec{a} = \langle 3, -2, 4 \rangle$$
 is perpendicular to $\vec{b} = \langle c, 5, 6 \rangle$, find the value of c .

the value of
$$\it c$$
 .

$$\vec{a} \cdot \vec{b} = 0$$

 $3(c) - 2(5) + 4(6) = 0$
 $3c = -14$

/3 PTS

SCORE:

Write $\vec{d} = <5, 1>$ as the sum of 2 vectors, one perpendicular to $\vec{g} = <-6, 4>$ and one parallel to \vec{g} . SCORE: _____/6 PTS

PROJ_g
$$\vec{J} = \frac{\vec{J} \cdot \vec{g}}{\vec{g} \cdot \vec{g}} \vec{g} = \frac{5(-6) + 1(4)}{(-6)^2 + 4^2} (-6, 4)$$

$$= \frac{-26}{(-6)^2 + 4^2} (-6, 4)$$

$$(-6, 4)$$

$$= \frac{3}{5} \cdot \frac{3}{2} \cdot$$

Let
$$\vec{s} = -\vec{i} + 7\vec{k}$$
.

[c]

SCORE: / 11 PTS

EXCEPT AS

LOTET

Find a vector \vec{t} , with magnitude of 6, in the opposite direction as \vec{s} . [a] Write your answer in component form (ie. using angle bracket notation.)

Write your answer in component form (ie. using angle bracket notation.)
$$-6\left(\frac{1}{||\vec{s}||}\right)\vec{s} = \frac{-6}{|\vec{s}||}(-1, 0, 7)$$

$$= \left(\frac{3\sqrt{2}}{5}, 0, -\frac{2\sqrt{2}}{5}\right)$$

$$= \left(\frac{3\sqrt{2}}{5}, 0, -\frac{2\sqrt{2}}{5}\right)$$

[b] If \vec{s} represents a force that moves an object from T = (2, 3, -8) to M = (-1, -5, -6), find the work done.

$$3.TM = 3.\langle -1-2, -5-3, -6-8 \rangle$$

= $\langle -1, 0, 7 \rangle \cdot \langle -3, -8, 2 \rangle$
= $\langle -1, 0, 7 \rangle \cdot \langle -3, -8, 2 \rangle$

If \vec{q} is a vector of magnitude 3 such that \vec{q} makes a 120° angle with \vec{s} , find $\vec{q} \cdot \vec{s}$.

$$\vec{q} \cdot \vec{s} = \|\vec{q}\| \|\vec{s}\| \cos |20^{\circ}$$

= $3.5\sqrt{2} \cdot (-\frac{1}{2})$
= $-15\sqrt{2}$

Find the angle between $\vec{c} = <-3, 0, -4>$ and \vec{s} . [d]

[d] Find the angle between
$$\vec{c} = \langle -3, 0, -4 \rangle$$
 and \vec{s} .

Cos⁻¹ $\frac{\vec{c} \cdot \vec{s}}{\|\vec{c}\| \|\vec{s}\|} = \cos^{-1} \frac{(-3)(-1) + 0 + (-4)(7)}{\sqrt{(-3)^2 + (-4)^2}}$

= $\cos^{-1}\frac{25}{25\sqrt{2}} = \cos^{-1}\frac{1}{\sqrt{2}} = \cos^{-1}\frac{1}{\sqrt{2}} = 45^{\circ} \text{ or } \frac{\pi}{4}$

[a] The equation of the
$$xz$$
 - trace of the sphere $(x+1)^2 + (y-4)^2 + (z-9)^2 = 19$ is $(x+1)^2 + (z-9)^2 = 3$.

[b] If $\vec{b} \cdot \vec{a} = -9$, then the angle between \vec{a} and \vec{b} is OBTUSE 1. (NOTE: The answer is one word.)

[FILL IN THE BLANKS]

SCORE: _____ / 7 PTS

You start at the origin in 3D, and move 6 units right, 8 units down, and 4 units backward. You are now at the point with

Coordinates (-4, 6, -8), you are in octant, 61, and you are 41 units away from the yz - plane.